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SHOCK CAPTURING FOR STEADY, SUPERSONIC, 
TWO-DIMENSIONAL ISENTROPIC FLOW 

P. GLAISTER 
Department of Mathematics. PO Box 225, University of Reading, Whitcknighis, Reading RG6 2AX, U.K. 

SUMMARY 

A finite difference scheme is presented for the solution of the two-dimensional equations of steady, 
supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock- 
capturing by design and incorporates space marching as a result of the assumption that the flow is wholly 
supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic 
jumps and reflection from a wall. 
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1. INTRODUCTION 

Some engineering applications deal with supersonic flow governed by the steady, isentropic flow 
equations. This is particularly true for hydraulic engineering dealing with open channels carrying 
supercritical flows, to which the equations of isentropic flow apply using the standard gas 
dynamics analogy with the shallow water equations. Typical examples are sewer systems, 
spillways and naturally occurring mountainous streams and rivers during heavy rainfall. It is 
widely accepted that the analysis and design of channels having supercritical flow can be carried 
out using this model.'-'* 

Of the aforementioned references, only three numerical schemes have any degree of success in 
computing oblique jumps. In Reference 1 Lax and MacCormack schemes are used to compute 
supercritical, free surface flows, although the jump is spread over a number of mesh points. A 
shock-tracking scheme was used by Pand~ l f i ,~  whilst Demuren4 adapted the numerical methods 
of Patankar and Spalding for the calculation of supercritical, free surface flows in open channels. 

In 1988 Glaister" presented a numerical scheme for the one-dimensional, unsteady Euler 
equations with general equations of state. This scheme (i) captures shocks automatically over two 
or three cells, (ii) is second-order-accurate and (iii) is computationally efficient. It is the underlying 
ideas of this scheme that we use in this paper to develop a new scheme for steady, supersonic, 
isentropic flows. Importantly, the scheme is also efficient, second-order-accurate and captures 
oblique shocks over two or three cells. As mentioned previously, we apply space marching by 
observing that the resulting equations are hyperbolic with respect to one marching direction. The 
scheme is then applied to two problems concerning oblique standing waves governed by the 
steady shallow water equations by employing the gas dynamics analogy mentioned above. 
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2. GOVERNING EQUATIONS 

The equations governing the isentropic flow of gas in a pipe of rectangular cross-section can be 
written in conservation form as 

W, + F, + G, = 0, 

w = (P, pu, dT, 

(1) 

(24 

where 

P = P ( P ) -  ( 3 )  
Equation ( 3 )  is a known gas law. The quantities p =p(x, y, t )  and u=u(x ,  y, t), v = v ( x ,  y, t )  
represent the density and the components of the fluid velocity in the x-  and y-directions 
respectively at a general position x, y and at time t .  Equations (1H3) represent conservation of 
mass and momentum. 

In this paper it is the steady form of equation (1) that we consider. Thus with w,=O and 
(P, u, 0, P )  = (P, u, u, PI(% Y 1 we have 

F,+G, = 0, (44 

W h ,  Y)=wo(Y). (4b) 

with F and G as before, together with a boundary condition 

3. SPACE MARCHING 

Consider solving (4a, b) with F and G as defined by (2b, c), which can be written as 

F, + AF, = 0. (5 )  

If the Jacobian A = dG/dF has real, distinct eigenvalues, then the system (4a) is hyperbolic and we 
shall assume this to be the case here. This assumption corresponds to the flow governed by (4a, b) 
being supersonic everywhere. Thus it is appropriate to use techniques similar to those developed 
for time-dependent conservation laws of the form 

C, + H(c)~  = 0, c(x, 0)  = co (XI, (6) 

(7) 

i.e. 

C, + Ec, = 0, 

where c is the conserved variable and E=aH/dc. Instead of marching forward in time ‘t’, for 
(4a, b) we march forward in the space variable ‘x’, for example. In particular, smooth solutions of 
(6) will develop discontinuities (shock) in time and likewise (4a, b) will exhibit oblique jumps in 
space. 

A specific technique for solving (6) in the case of the unsteady Euler equations with real gases 
was given in Reference 11 and we develop similar ideas here for solving (4a, b). The scheme in 
Reference 11 represents an approximation to the scheme of Godunov,’2 and the scheme 
presented here can be viewed in a similar way. Although we use the concept of a Riemann 
problem as in Reference 11 by identifying ‘x’ as a timelike variable, three important differences 
remain. Firstly, the structure differs as a result of the equations of flow being different, and the 
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resulting construction of the scheme is more detailed, although its actual implementation is just as 
straightforward; secondly, the scheme applies only to flows that are wholly supersonic in at least 
one direction, which we take, without loss of generality, to be the x-direction; and finally, the flow 
is assumed to be steady. Thus it is imperative that the x-axis is aligned with one of these 
directions, e.g. the predominant flow direction. 

4. LINEARIZED RIEMANN PROBLEM 

If an approximate solution of equations (4a, b) is sought (along a y-co-ordinate line x = xj) using a 
finite difference method, then the solution is known at a set of discrete mesh points (x, y) =(xi, Yk).  

The approximate solution wi  to w at (xi, yk) can be considered as a set of piecewise constants 
w = w i  for y€(yk-Ay/2, Yk+Ay/2), where A y = ~ k - - y ~ - ~  is a constant mesh spacing (see e.g. 
Reference 12). A Riemann problem is now present at each interface yk-1,2 =+(yk-, + Y k )  separa- 
ting adjacent states wi-  and wi . If the steady equations (4a, b) are linearized by considering the 
Jacobian matrix A = dG/dF to be constant in each interval (yk- 1,  yk), say = A(wi-  1,  wi), then 
the resulting equations 

F, + AF, = o (8) 
can be solved approximately using explicit space marching in the x-direction. The step Ax is 
restricted so that the solutions of adjacent Riemann problems do not interact, and this sets a 
restriction on the mesh spacing in the x-direction once Ay has been chosen. The scalar problems 
that result from this analysis can be solved by upwind differencing consistent with the theory of 
characteristics; however, an approximate Jacobian matrix needs to be constructed in each 
interval so that jumps can be captured automatically. Thus, given the boundary condition 
w(xo, y, )=wo(yk)=w~,  a mesh yk in the y-direction and flow that is wholly supersonic in the 
x-direction, it is possible to compute in turn the approximate solution along x = xo +Ax, 
x = x 0 + 2 A x , .  . . . 

5. NUMERICAL SCHEME 

Consider equations (4a, b) and begin by noting the structure associated with equations (4a) 
and (5). 

5.1. Structure 

Let B=dF/dw and C = dG/aw denote the Jacobians of the flux functions F and G,  so that the 
Jacobian A =  JG/dF=CB-'. Denote also the eigenvalues and eigenvectors of A by Izi  and ri ,  
i = 1,2,3, respectively, so that 

Ari=Airi, i=  1,2,3, (9) 

(C-AiB)ei=O, i =  1,2, 3, (10) 

Be,=ri, i =  1, 2, 3. (1  1) 

w, + d w ,  = 0, (12) 

and hence 

where 

Another associated matrix is d = B- ' C since (4a) can be written as 
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and from (10) 

(B-lC-liI)ei=O. i=  1,2, 3, (13) 
so that d has eigenvalues li with eigenvectors ei.  In the Appendix we state A, d, B and C. 
Solving (lo), we find that 

uu i- a2 J(M2 - 1) u 
u2-a2  ’ u’ 

- l l ,  2 , 3  = 

e1,2 = +u,  f(u2-a2),a2J(M2-1)+uu 

e3 = (0, u, uIT, 

where M is the local Mach number given by 

which is assumed to satisfy M > 1, and a is the local sound speed given by 

a2=- ,  dP 
dP 

using the gas law (3). 

( 14a-c) 

5.2. Construction of d 
In constructing numerical solutions to (4a) or (5), it is our aim, as stated in Section 4, to obtain 

an approximation to the Jacobian A = i?G/i?F in an interval (yk- yk), so that approximate 
solutions can be sought to the linearized Riemann problem (8). 

Consider two adjacent states wjk- = wL and wjk = wR (left and right) given at either end of the cell 
( y k -  y k )  =(yL, y R )  on the x-co-ordinate line x = x j .  Following the analogy of the steady problem 
(5 )  with the unsteady problem (7) made in Section 3, and the work in Reference 11, it is 
appropriate to construct the approximate Jacobian A= A(wL, wR) in this cell such that 

AAF=AG (18) 
for all jumps AF, where A(.)=(*)R-(*)L.  This will mean that oblique jumps will be captured 
automatically. The matrix d is assumed to have the form of A with the flow variables a, u and u 
replaced by averages Z, u“ and u” over the cell (yL,yR),  and these averages are determined by 
solving (1 8). 

Equivalently we could seek matrices and (see Appendix) such that 

B A w = A F  and e A w = A G  (19% b) 
for any jump Aw, and hence by combining (18) and (19a, b), 

A = €% - 1 .  

Denoting the eigenvalues of A by & with corresponding eigenvectors Fi, then similar relation- 
ships to those in Section 5.1 hold, i.e. 2 has eigenvalues & with eigenvectors E i ,  where 

(C-&B)Ei=O, i = l ,  2, 3, (21) 

Bei=fi ,  i =  1,2, 3. (22) 
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Solving (21) gives 

E3 = (0, ii, iy, 
where 

(23a-c) 

and the averages 6, D and 5 are still to be determined. Before giving the solution to this problem, 
we write down the numerical scheme for (4a, b) and from this it will be evident which information 
we shall require. 

5.3. Numerical scheme 

We propose solving (4a, b) via approximate Riemann solutions of 
I 

w, + d w ,  = 0, (26) 
where z= B-' (compare with (12)). This gives rise to the upwinded scheme 

. .  
wj+ 1 - w~ ;+ 2 w'k - wJ,.- 1 

I = 0, 
Ax AY 

where 1 can be k -  1 or k .  By projecting 
3 . .  

A w = w J , - w J , - ~ = w R - w , =  1 BiCi, 
i =  1 

(27) gives, in view of (21), 
3 

w:'+l-wf c 
+ i = l  = O  

Ax AY 
along a y-co-ordinate line x=xj ,  where Ax and Ay represent the mesh spacing in the x- and 
y-directions respectively. Upwind differencing now applied to equation (29) gives the following 
first-order algorithm for the solution of equations (4a, b): 

Ax - 
Ay " '  add --,I.&& to wR when x i > O  

or 
Ax - 
Ay ' I L  

add - - , I . & . E .  to wL when &<O.  

Equivalently, by projecting 

A ~ ~ ~ ~ , ~ = w ~ - w J , ~ , = w , - w ~ = (  . .  ,isi) , 
i =  1 k- 112 
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we split 
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into contributions A * from left and right travelling waves, where the + (-) portion is contrib- 
uted by the sum over all positive (all negative) eigenvalues. Upwind differencing is now effected by 

Thus we note the direction of flow of information given by the approximate eigenvalues & and use 
this information to update the solution consistent with the theory of characteristics of equation 
(5a). In addition, second-order transfers of these first-order increments can be made to achieve 
higher accuracy, provided that they are limited to maintain mon~tonicity. '~ The use of these 'flux 
limiters' improves accuracy without introducing non-physical spurious oscillations, especially at 
jumps. 

Solving (28) gives 

, (34% b) 
+v"-ii[J(aZ- l)] [ ~ a " 2 J ( a 2 - 1 ) A p + i i A ( p v ) - v " A ( p u ) ]  

252 n;i2 (C2 - 5 2  ) 8 1 , 2 =  

d A ( p u ) + i 7 A ( p ~ ) - a " ~ ( f i ~ -  1)Ap 
a"2 a2 

8, = 

Therefore all that remains is to determine the averages a", ii and v" to incorporate into the scheme 
(30), utilizing the eigenvalues xi and eigenvectors Ei of the approximate Jacobian 2 and the 'wave 
strengths' &i in (34a-c). 

5.4. Averages 

Using the form for A in the Appendix (or B and c)  and solving (18) (or (19a, b)), we obtain the 
following averages for a", ii and i7 in (yt, yR) (see Appendix): 

With these averages it is possible to rewrite the Bi in (34a-c) purely in terms of primitive variables 
p, u, v and p by noticing that A(pu) = PAu + CAP, where 1 = J(pLpR), and similarly for A(pu). 

Thus the numerical scheme for the solution of (4a, b) is given by the marching procedure 
outlined in Section 3 together with the algorithm given by (30) (modified to give second-order 
accuracy) using the expressions in (23aH25) and (34aH36). As a result of using numerical 
characteristic decomposition, this scheme closely models the physics of the problem, and in 
particular captures oblique shocks well. 
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Finally, we observe that as Aw --f 0, 

(A, 2 ,8 ,  C, & , E i ,  Pi, d, u", 5) +(A, d, B, C, ,Ii, ei, r i ,  a, u, u), 

consistent with the continuous case. 

6. TEST PROBLEM AND NUMERICAL RESULTS 

In this section we present results for the solution of two test problems using the second-order 
scheme of Section 5 (with the superbee limiterI3) applied to supercritical, free surface flow 
governed by the steady form of the shallow water equations. We are able to use the scheme here 
since the shallow water equations are analogous to those for isentropic flow. This analogy is 
completed by identifying p as the total height above the bottom of a channel multiplied by the 
acceleration due to gravity, and specifying the 'gas' law (3) as 

p=+p2. (37) 
(N.B. We have non-dimensionalized the standard equation p = i g p 2  representing this analogy, 
where g is the acceleration due to gravity.) The average for d in (33) then simplifies to 

d2 = + ( p L  + PR). (38) 
The first problem concerns an oblique hydraulic jump or oblique standing wave, which is 

produced when a vertical boundary is deflected inwards to the flow as in the case of a channel 
contraction. This causes an abrupt depth increase which is propagated from the point of 
deflection in the wall to the interior of the flow field at an angle j?, say, with respect to the flow 
direction. If the bottom friction and slope of the channel are neglected, then this problem has an 
analytical solution given by 

In (39a, b), j? represents the angle of the oblique jump with respect to the upstream flow 
direction, 8 represents the angle of wall deflection and p1 represents the value of p downstream of 
the contraction. Also, p o  and M ,  denote the upstream values of p and M ,  where V; = ua + ua,  and 
u, = V, cos 0 and u ,  = - V, sin 6 denote the x- and y-components of the velocity of the upstream 
flow. ( M  now refers to the local Froude number.) Equations (39a, b) need to be solved iteratively 
for the ratio pl/po. 

For the computation presented here we align the x-axis with the wall downstream of the 
deflection point. We apply boundary conditions along x=O given by the upstream flow values 
( p , ,  u,, u , )  and apply reflecting boundary conditions along the wall y=O as described in 
Reference 11. The example chosen corresponds to an upstream flow with a Froude number 
M ,  = Vo/Jp,=4 and a wall deflection 6= 12". The analytical solution given by (39a, b) yields 
p l / p o  = 1.987 and /3 = 25.505". The numerical computation of this problem using 60 points in the 
x-direction and 20 points in the y-direction has resulted in the three-dimensional plot of p/po 
shown in Figure 1. A similar calculation with 120 points in the x-direction and 40 points in the 
y-direction is shown in Figure 2. As stated, friction and bottom slope terms have been neglected in 
order to make a comparison with an analytic solution. Within the resolution of the grid, the 
numerical solution agrees with the analytic solution and thus no advantage is gained by 
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Figure 1. Plot of p/po for Problem 1 with a 60 x 20 mesh 

Figure 2. Plot of p/po for Problem 1 with a 120 x 40 mesh 

overplotting the exact solution. The predicted values of p l ,  M ,  and agree with the exact 
solution to three-significant-figure accuracy. In particular, the oblique jump has been captured 
over at most three cells; mostly over one or two. 

Furthermore, the algorithm is computationally efficient. Using an Amdahl V7 and 120 x 40 
mesh points takes 0.5 CPU seconds to compute the results in Figure 2. 

The second test problem concerns an oblique hydraulic jump reflecting from a wall. In this 
problem a flow with p = p o  and M = M ,  is deflected an angle 6 by a turning wall. This creates an 
oblique jump that travels until it impinges on a wall (parallel to the initial flow), where it is 
reflected. We take the values pa = 9.800 and 13 = 6.346", for which the oblique jump makes an angle 
20.000" with the initial flow direction, and after reflection makes an angle 17-812" with the initial 
flow direction. The parameters downstream of the oblique jump are p ,  and M ,  , and downstream 
of the reflected oblique jump are p 2  and M 1 ,  where p l / p o =  1.498, p 2 / p 0  =2.092, M ,  =3.160 
and M ,  = 2.563. The result of the numerical computation of this problem using the scheme of 
Section 5 is shown by three-dimensional plots of p/po from two viewpoints in Figures 3 and 4, 
and with a grid comprising 60 x 10 mesh points takes 025 CPU seconds to run. A similar 
calculation with 120 x 20 points is shown in Figures 5 and 6. As for the first test problem, within 
the resolution of the grid the numerical solution agrees with the analytic solution and no 
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Figure 3. Plot of p / p o  for Problem 2 with a 60 x 10 mesh 

Figure 4. Plot of p / p o  for Problem 2 with a 60 x 10 mesh 

Figure 5. Plot of p / p o  for Problem 2 with a 120 x 20 mesh 
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Y 

Figure 6. Plot of p/po for Problem 2 with a 120 x 20 mesh 

advantage is gained by overplotting the exact solution. The predicted values of p , ,  p2 ,  M , ,  M ,  
and the shock angles agree with the exact solution to three-significant-figure accuracy. 

We note that for the shallow water equations it is a straightforward matter to incorporate 
source terms due to friction and a non-zero bottom slope as a minor modification to the 
algorithm. 

7. CONCLUSIONS 

We have presented a numerical scheme for the equations of steady, supersonic, isentropic flow. 
The resulting algorithm was shown to be computationally efficient and on two test problems the 
numerical solution agrees with the analytic solution. In particular, the resulting oblique jumps are 
captured over two or three cells. 

APPENDIX 

We state here the Jacobians A, B, C and d their corresponding approximations and derive the 
averages given in Section 5.4. 

Jacobians 

The required Jacobians are 

, r u(u2+u2) - UU u2-a2 1 
0 0 

2a2(u2+u2) -u(a2+uZ) 2u(u2--aZ) 
A =  (40, 44) 

0 1 0  

(41945) 
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c= [ O  -uu ::I, 
a 2 - v 2  0 2v 

0 u(u2-aZ) , (43, 47) 
u’ i [ O  a2(u2+v2-a2)  -uv2 v(2uZ-a2) 

U‘U - uv 
1 

d= 
u(u2 - 2 )  

together with their corresponding approximations d, 8, r: and 2 given by (44H47) respectively, 
where u“, 6 and ii have replaced u, v and a in (40H43). 

Averages 

The averages required in Section 5 are determined by solving 

AG =AAF 

AF = B A ~  
for arbitrary jumps AF. Alternatively, we solve 

(49) 

and 

AG = C A ~  (50) 

P=J(PL PR) 9 (51) 

for arbitrary jumps Aw, so that A=ck1. To achieve this, we introduce the averages 

from which we can show that 

A(pq)=PAq+@p, q = u ,  0, (53) 

A(pqr) = PdAr + PtAq + @Ap, (54) q = u, v, r = u, v. 

Taking equation (49) first, using the form for 8 from (45) and expanding using (5 1H54), we arrive 
at the pair of equations 

(u“ - ti)’Ap + 2$(ii - ~ ) A u  + ii2Ap - Ap =0, 

(12 - &)(a - 6) Ap + 0 (6- 6) AU + 0 (u” - t i ) A ~  = 0, 
(55 )  

(56) 

to be satisfied for all independent variations Ap, Au and Av. Equation (56) gives rise to the set of 
equations 

(57) 

(58)  

(59) 

p(u” - a)  = 0, 

fi  (v” - a) = 0, 

(6-  ti)@ - v”) = 0, 

whose systematic solution gives rise to the only physical solution (PZO), ;=ti and v”=O. 
Substituting this solution into (55 )  then gives 

(60) ii2 Ap - Ap = 0, 
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If Ap = 0, (60) is automatically satisfied and any consistent choice for dz will suffice, for which we 
set 

-2 - dP 
dP’ 

a -- 

giving the averages in Section 5.4. It is then a trivial matter to check that (50) is satisfied using 
these averages and the form for e from (46). 
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